Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.
نویسندگان
چکیده
Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.
منابع مشابه
Cross-polarization efficiency in INS systems using adiabatic RF sweeps
The theory describing nuclear magnetic resonance cross-polarization using adiabatic sweeps of the rf spin-lock fields through the Hartmann–Hahn matching condition is extended to small homonuclear coupled systems of the type INS . In particular, the connection is made between such experiments and the associated theoretical limits on polarization transfer—the ‘‘unitary bounds’’— demonstrating tha...
متن کاملOxygen - 17 Cross - Polarization NMR Spectroscopy of Inorganic Solids
We have obtained I70 nuclear magnetic resonance spectra of a variety of ‘70-labeled solids (Mg(OH)z, Ca(OH)*, boehmite (AlO(C talc (Mg3Si.,0,,(OH)2), (C6H,),SiOH, and amorphous Si02) using high-field static and “magioangle” sample spinning techniques, together with ‘H cross polarization and dipolar decoupling. Our results show that large cross-polarization enhancements can be obtained and that ...
متن کاملMethodology and Applications of High Resolution Solid- State Nmr to Structure Determination of Proteins
A number of methodological developments and applications of solid-state NMR for assignment and high resolution structure determination of microcrystalline proteins and amyloid fibrils are presented. Magic angle spinning spectroscopy on uniformly and selectively C and N labeled samples is performed at magnetic fields from 11.7 to 21.1 T and spinning frequencies from 9 to 65 kHz. Dynamic Nuclear ...
متن کاملInvestigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy
We demonstrate the use of Lee-Goldburg cross-polarization (LG-CP) NMR under fast magic-angle spinning (MAS) to investigate the amplitude and geometry of segmental motions in biomolecular and polymeric solids. Motional geometry information was previously available only from 2H NMR, which, however, has limited site resolution and requires site-specific isotopic labeling. Using a 2D LG-CP techniqu...
متن کاملSensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 6 شماره
صفحات -
تاریخ انتشار 2015